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Abstract
Purpose – We aim to generalize the continuous-time principal–agent problem to incorporate time-inconsistent
utility functions, such as those of mean-variance type, which are prevalent in risk management and finance.
Design/methodology/approach –We use recent advancements of the Pontryagin maximum principle for
forward-backward stochastic differential equations (FBSDEs) to develop a method for characterizing optimal
contracts in such models. This approach addresses the challenges posed by the non-applicability of the
classical Hamilton–Jacobi–Bellman equation due to time inconsistency.
Findings – We provide a framework for deriving optimal contracts in the principal–agent problem under
hidden action, specifically tailored for time-inconsistent utilities. This is illustrated through a fully solved
example in the linear-quadratic setting, demonstrating the practical applicability of the method.
Originality/value – The work contributes to the existing literature by presenting a novel mathematical
approach to a class of continuous time principal–agent problems, particularly under hidden action with time-
inconsistent utilities, a scenario not previously addressed. The results offer potential insights for both
theoretical development and practical applications in finance and economics.
Keywords Principal–agent problem, Stochastic maximum principle, Pontryagin’s maximum principle,
Mean-variance, Time inconsistent utility functions
Paper type Research paper

1. Introduction
Risk management or the problem of finding an optimal balance between expected returns
and risk taking is a central topic of research within banking, economics and finance.
Applications such as portfolio optimization, optimal stopping and liquidation problems have
been of particular interest in the literature. In such applications it is common to consider
utility functions of mean-variance type. Mean-variance utility functions constitute an
important subclass of the so called time inconsistent utility functions for which the Bellman
principle of dynamic programming does not hold. Problems involving such utilities can
therefore not be approached by the classical Hamilton–Jacobi–Bellman equation. In this
paper we develop a method of studying a mean-variance setting of the celebrated principal–
agent problembymeans of the stochastic generalization of Pontryagin’smaximumprinciple.

The precise structure of the principal–agent problem goes as follows. The principal
employs an agent to manage a certain well-defined noisy asset over a fixed period of time.
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In return for his/her effort the agent receives a compensation according to some agreement,
set before the period starts. It could for instance involve a lump-sumpayment at the end of the
period, a continuously paying cash-flow during the period or both. Depending on what
information the principle has at hand to form an agreement, one distinguishes between two
cases; the full information and the hidden action-problem. The full information case differs
from the hidden action case in that the principal can observe the actions of the agent in
addition to the evolution of the asset. Therefore, under full information the principal is
allowed to tailor a contract based on both outcome and effort, not only outcome as for hidden
actions. In both cases the contract is constrained by the agent via a so called participation
constraint, clarifying the minimum requirements of the agent to engage in the project. Under
hidden action the contract is further constrained by the incentive compatibility condition,
meaning that as soon as a contract is assigned the agent will act as to maximize his/her own
utility and not necessarily that of the principal.

The pioneering paper in which the principal–agent problem first appears is Holmstr€om
and Milgrom (1987). They study a continuous time model over a finite period in which the
principle and the agent both optimize exponential utility functions. The principal rewards
the agent at the end of the period by a lump-sum payment. As a result they find that the
optimal contract is linear with respect to output. The paper Holmstr€om andMilgrom (1987) is
generalized in Sch€attler and Sung (1993) to a mathematical framework that uses methods
from dynamic programming and martingale theory to characterize contract optimality.

The interest in continuous time models of the principal–agent problem has grown
substantially since the first studies appeared. In Cvitani�c et al. (2009), Sannikov (2008),
Westerfield (2006) and Williams (2013) (only to mention a few) the authors analyze
continuous time models in a classical setting, i.e. having one principal and one agent. Such
models are also covered in the recent book Cvitani�c and Zhang (2013). Other models such as
various multiplayer versions have been studied for instance in Kang (2013) and Koo
et al. (2008).

Our goal is to characterize optimal contracts in the classical setting of principal–agent
problem under hidden action for time inconsistent utility functions. We consider two
different modeling possibilities; hidden action in the weak formulation and hidden contract in
the strong formulation. In the first model the agent has full information of the mechanisms
behind the cash-flow and the principal wishes to minimize his/her mean-variance utility. In
the latter model the agent does not know the structure of the cash-flow and has to protect
him-/her-self from high levels of risk by an additional participation constraint of variance
type. To the best of our knowledge this has not previously been addressed in the literature. In
order to carry the program through we use recent generalizations of Pontryagin’s stochastic
maximum principle. The idea is to consider the principal–agent problem as a sequential
optimization problem.We first consider the agent’s problem of characterizing optimal choice
of effort. Then we proceed to the Principal’s problem which, by incentive compatibility,
becomes a constrained optimal control problem of a forward-backward stochastic
differential equation (from now on FBSDE). A similar scheme was considered in Djehiche
and Helgesson (2014) but without the non-standard mean-variance consideration. Optimal
control with respect to mean-variance utility functions has previously been studied in for
instance Li (2000), and Andersson and Djehiche (2011).

Optimal portfolios based on time inconsistent utilities have been addressed in Bj€ork and
Murgoci (2010), Bj€ork et al. (2014), Djehiche and Huang (2014), Ekeland and Lazrak (2006)
and Ekeland and Pirvu (2008). See also the recent book Bj€ork et al. (2021). A discrete version
of this class of problems boils down to study a system of forward-backward time series
whose analysis follows the same lines of reasoning as the time-continuous version but the
formulas are a bit clumsy.
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In the present literature of the principal–agent problem the paper closest to ours is
Williams (2013), in which a similar maximum principle approach is used. The setting is
classical (without time inconsistent utility functions) and the author finds a characterization
for optimal choice of effort in the agent’s problem. The full model involving the constrained
principal’s problem, however, is not considered. The main results of our study are presented
inTheorem 4.3 andTheorem 4.4 inwhich a full characterization of optimal contracts is stated
for two different models.

In practical terms, the assumptionsmade in our study reflect typical scenarios in financial
decision-making. For example, the mean-variance utility function is a standard way to
represent an investor’s desire to balance expected returns with risk. This assumption helps
simplify the complex reality of financialmarkets into amanageablemodel. However, it might
break down in situations where investor preferences are not stable over time or when there
are abrupt changes in market conditions. Our results imply that, under these assumptions, it
is possible to design contracts that align the interests of both the principal (e.g. an employer)
and the agent (e.g. an employee) even when the agent’s actions are not directly observable.

The paper is organized as follows. In Section 2 we introduce the mathematical machinery
from stochastic optimal control theory that is necessary for our purposes. Mean-variance
maximum principles are then derived in Section 3 by results from Section 2 in two different
but related cases. Section 4 is devoted to fit the methods from the previous sections into a
principle–agent framework. We consider two different models under hidden action and find
necessary conditions for optimality. Finally in Section 5 we make the general scheme of
Section 4 concrete by a simple and fully solved example in the linear-quadratic (LQ)-setting.

2. Preliminaries
Let T > 0 be a fixed time horizon and ðΩ;F ; F;PÞ be a filtered probability space satisfying
the usual conditions on which a 1-dimensional Brownian motion W ¼ fWtgt≥0 is defined.
We let F be the natural filtration generated by W augmented by all P-null sets N P, i.e.
F ¼ F t∨N P where F tdσðfWsg : 0≤ s≤ tÞ.

Consider the following control system of forward stochastic differential equations (SDEs)
of mean-field type:

dxðtÞ ¼ bðt; xðtÞ; E½xðtÞ�; sðtÞÞdt þ σðt; xðtÞ; E½xðtÞ�ÞdWt; t ∈ ð0;T�
xð0Þ ¼ x0

�

with a cost functional of the form

J ðsð$ÞÞdE

Z T

0
f ðt; xðtÞ;E½xðtÞ�; sðtÞÞdt þ hðxðTÞ;E½xðTÞ�Þ

� �

; (2.1)

where b : ½0;T�3 R 3 R 3 S → R, σ : ½0;T�3 R 3 R → R, f : ½0;T�3 R 3 R 3 S → R and
h : R 3 R → R and S ⊂ R is a non-empty subset. The control s($) is admissible if it is an
F-adapted and square-integrable process taking values in S. We denote the set of all such
admissible controls byS½0;T�. In order to avoid technicalities in regularity that are irrelevant
for our purposes we state the following assumption.

Assumption 1. The functions b, σ, f and h are C1 with respect to x and ~x, where ~x denotes
the explicit dependence of E½xð$Þ�. Moreover, b, σ, f and h and their first
order derivatives with respect to x and ~xare bounded and continuous in x,
~x and s.
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We are interested in the following optimal control problem:
Problem (S). Minimize (2.1) over S½0;T�.
Any sð$Þ∈S½0;T� satisfying

J
�
sð$Þ

�
¼ inf

sð$Þ∈S½0;T�
J ðsð$ÞÞ

is called an optimal control and the corresponding xð$Þ is called the optimal state process. We
will refer to ðxð$Þ; sð$ÞÞ as an optimal pair.
The following stochastic maximum principle for characterizing optimal pairs in problem (S)
was found in Buckdahn et al. (2011).

Theorem 2.1. The stochastic maximum principle. Let the conditions in Assumption 1
hold and consider an optimal pair ðxð$Þ; sð$ÞÞ of problem (S). Then there
exists a pair of processes ðpð$Þ; qð$ÞÞ∈L2

F ð0;T; RÞ3 ðL2
F ð0;T; RÞÞ

satisfying the adjoint equation

dpðtÞ ¼ − bx
�
t; xðtÞ;E

h
xðtÞ

i
; sðtÞ

�
pðtÞ þ E

h
b~x

�
t; xðtÞ; E

h
xðtÞ

i
; sðtÞ

�
pðtÞ

in

þσx

�
t; xðtÞ;E

h
xðtÞ

i�
qðtÞ þ E

h
σ~x

�
t; xðtÞ;E

h
xðtÞ

i�
qðtÞ

i

�f x
�
t; xðtÞ;E

h
xðtÞ

i�
; sðtÞ

�
� E f ~x

�
t; xðtÞ;E

h
xðtÞ

i�
; sðtÞÞ

h io
dt

þqðtÞdWt;

pðTÞ ¼ −hx

�
xðTÞ;E

h
xðTÞ

i�
� E
h
h~x

�
xðTÞ;E

h
xðTÞ

i�i
;

8
>>>>>>>><

>>>>>>>>:

(2.2)

such that

sðtÞ ¼ argmax
s∈S
H
�
t; xðtÞ; s; pðtÞ; qðtÞ

�
; a:e: t ∈ ½0;T�; P� a:s: (2.3)

where the Hamiltonian function H is given by

Hðt; x; s; p; qÞdbðt; x; E½x�; sÞ$pþ σðt; x;E½x�Þ$q� f ðt; x;E½x�; sÞ (2.4)

for ðt; x; s; p; qÞ∈ ½0;T�3 R 3 S 3 R 3 R.

Remark 2.2. It is important to remember that Theorem 2.1 merely states a set of
necessary conditions for optimality in (S). It does not claim the existence of
an optimal control. Existence theory of stochastic optimal controls (both in
the strong and the weak sense) has been a subject of study since the sixties
(see e.g. Kushner (1965)) and, at least in the case of strong solutions, the
results seem to depend a lot upon the statement of the problem. In the weak
sense an account of existence results is to be found inYong and Zhou (1999)
(Theorem 5.3, p. 71).

Remark 2.3. Restricting the spaceU to be convex allows for a diffusion coefficient of the
form σðt; x; E½x�; sÞ, without changing the conclusion of Theorem 2.1. In the
case of a non-convex control space the stochastic maximum principle with
controlled diffusion was proven in Peng (1990) and requires the solution of
an additional adjoint BSDE.We choose to leave thismost generalmaximum
principle as reference in order to keep the presentation clear.
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As pointed out in Remark 2.2 it is a non-trivial task to prove the existence of an optimal pair
ðxð$Þ; sð$ÞÞ in a general stochastic control model under the additional assumptions.

Assumption 2. The control domain S is a convex body in R. The maps b, σ and f are
locally Lipschitz in u and their derivatives in x and~xare continuous in x, ~x
and s, the following theorem provides sufficient conditions for optimality
in (S).

Theorem 2.4. Sufficient conditions for optimality. Under Assumptions 1 and 2 let
ðxð$Þ; sð$Þ; pð$Þ; qð$ÞÞ be an admissible 4-tuple. Suppose that h is convex
and further that Hðt; $; $; $; pðtÞ; qðtÞÞ is concave for all t ∈ ½0;T� P-a.s.
and

sðtÞ ¼ argmax
s∈S
H
�
t; xðtÞ;E

h
xðtÞ

i
; s; pðtÞ; qðtÞ

�
; a:e: t ∈ ½0;T�; P� a:s:

Then ðxð$Þ; sð$ÞÞ is an optimal pair for problem (S).

The stochastic maximum principle has since the early days of the subject (in pioneering
papers by, e.g. Bismut (1978) and Bensoussan (1982)) developed a lot and does by now apply
to a wide range of problems more general than (S) (see for instance Peng (1990), Andersson
andDjehiche (2011), Buckdahn et al. (2011), Djehiche et al. (2014)). For our purposeswe need a
refined version of Theorem 2.1, characterizing optimal controls in a FBSDE-dynamical
setting under state constraints. More precisely we wish to consider a stochastic control
system of the form

dxðtÞ ¼ bðt;ΘðtÞ; sðtÞÞdt þ σðt;ΘðtÞÞdWt

dyðtÞ ¼ −cðt;ΘðtÞ; sðtÞÞdt þ zðtÞdWt

xð0Þ ¼ x0; yðTÞ ¼ φðxðTÞÞ;

8
<

:
(2.5)

where b; σ; c : ½0;T�3 R6
3S → R and φ : R → R, with respect to a cost-functional of

the form

J ðsð$ÞÞdE

Z T

0
f ðt;ΘðtÞ; sðtÞÞdt þ hðxðTÞ;E½xðTÞ�Þ þ gðyð0ÞÞ

� �

; (2.6)

and a set of state constraints

E

Z T

0
Fðt;ΘðtÞ; sðtÞÞdt þHðxðTÞ; E½xðTÞ�Þ þGðyð0ÞÞ

� �

d

E

Z T

0
f 1ðt;ΘðtÞ; sðtÞÞdt þ h1ðxðTÞ; E½xðTÞ�Þ þ g1ðyð0ÞÞ

� �

..

.

E

Z T

0
f lðt;ΘðtÞ; sðtÞÞdt þ hl

ðxðTÞ; E½xðTÞ�Þ þ glðyð0ÞÞ
� �

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

∈ Λ;
(2.7)

for some closed and convex set Λ ⊆ Rl. In the above expressions we have introduced
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ΘðtÞdðxðtÞ; yðtÞ; zðtÞ; E½xðtÞ�; E½yðtÞ�; E½zðtÞ�Þ;

in order to avoid unnecessarily heavy notation. The optimal control problem is:
Problem (SC). Minimize (2.6) subject to the state constraints (2.7) over the set S½0;T�.
To get a good maximum principle for (SC) we require some further regularity conditions
ensuring solvability of (2.5). These conditions are listed in the following assumptions and can
be found in Li and Liu (2014).

Assumption 3. The functions b, σ, c are continuously differentiable and Lipschitz
continuous in Θ, the functions h, g, hi, gi are continuously differentiable
in x and y respectively, and they are bounded by Cð1þ jxj þ jyj
þjzj þ j~xj þ j~yj þ j~zj þ jsjÞ, C(1 þ jxj) and C(1 þ jyj), respectively.

Assumption 4. All derivatives in Assumption 4 are Lipschitz continuous and bounded.

Assumption 5. For all Θ ∈ R6, s∈S, Að$;Θ; sÞ∈L2
F ð0;T; R3Þ, where we have A(t, Θ, s)

d(c(t, Θ, s), b(t, Θ, s), σ(t, Θ)) and

L2
F

�
0;T; Rk

�
d ψ : ½0;T�3 Ω → Rk

�
� ψ is F� adapted and E

Z T

0
jψj2dt

� �

< ∞
� �

;

and for each x ∈ R, φðxÞ∈L2
F ðΩ; RÞ. Furthermore, there exists a constant C > 0 such that

jAðt;Θ1; sÞ � Aðt;Θ2; sÞj≤CjΘ1 � Θ2j; P� a:s: and for a:e: t ∈ ½0;T�;
jφðx1Þ � φðx2Þj≤Cjx1 � x2j; P� a:s;
for allΘ1;Θ2 ∈ R6:

8
<

:

Assumption 6. The functions A and φ satisfy the following monotonicity conditions:

E
D
Aðt;Θ1; sÞ � Aðt;Θ2; sÞ;Θ1 � Θ2

E
≤ βEjΘ1 � Θ2j

2
; P� a:s

D
φðx1Þ � φðx2Þ; x1 � x2

E
≥ μjx1 � x2j

2

8
<

:

for all Θ1;Θ2 ∈ R6, x1; x2 ∈ R
In the spirit of Li and Liu (2014) we are now ready to formulate the state constrained
stochastic maximum principle for fully coupled FBSDEs of mean-field type.

Theorem 2.5. The state constrained maximum principle. Let Assumptions 3–6 hold and
assume Λ ⊆ Rl to be a closed and convex set. If ðxð$Þ; yð$Þ; zð$Þ; sð$ÞÞ is an
optimal 4-tuple of problem (SC), then there exists a vector ðλ0; λÞ∈ R1þl

such that

λ0 ≥ 0; jλ0j2 þ jλj2 ¼ 1; (2.8)

satisfying the transversality condition

�

λ; v� E

Z T

0
F
�
t; xðtÞ; yðtÞ; zðtÞ; sðtÞ

�
dt þH

�
xðTÞ

�
þG

�
yð0Þ

�� ��

≥ 0; ∀v∈ Λ (2.9)
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and a 3-tuple ðrð$Þ; pð$Þ; qð$ÞÞ∈L2
F ðΩ;Cð½0;T�; RÞÞ3L2

F ðΩ;Cð½0;T�; RÞÞ3L2
F ð0;T; RÞ

of solutions to the adjoint FBSDE

drðtÞ ¼ cyðtÞrðtÞ � byðtÞpðtÞ � σyðtÞqðtÞ þ
Xl

i¼0

λif
i
yðtÞ

(

þE c~yðtÞrðtÞ � b~yðtÞpðtÞ � σ~yðtÞqðtÞ þ
Xl

i¼0

λif
i
~yðtÞ

" #)

dt

þ czðtÞrðtÞ � bzðtÞpðtÞ � σzðtÞqðtÞ þ
Xl

i¼0

λif
i
zðtÞ

(

þE c~zðtÞrðtÞ � b~zðtÞpðtÞ � σ~zðtÞqðtÞ þ
Xl

i¼0

λif
i
~zðtÞ

" #)

dWt;

dpðtÞ ¼ − �cxðtÞrðtÞ þ bxðtÞpðtÞ þ σxðtÞqðtÞ �
Xl

i¼0

λif
i
xðtÞ

(

þE �c~xðtÞrðtÞ þ b~xðtÞpðtÞ þ σ~xðtÞqðtÞ �
Xl

i¼0

λif
i
~xðtÞ

" #)

dt

þqðtÞdWt;

rð0Þ ¼
Xl

i¼0

λiE
h
gi
�
yð0Þ

�i
;

pðTÞ ¼ −φx

�
xðTÞ

�
rðTÞ �

Xl

i¼0

λi

�
hi
x

�
xðTÞ;E

h
xðTÞ

i�
þ E
h
hi

~x

�
xðTÞ;E

h
xðTÞ

i�i�
;

(2.10)

such that

sðtÞ ¼ argmax
s∈S
H
�
t;ΘðtÞ; s; rðtÞ; pðtÞ; qðtÞ; λ0; λ

�
a:e: t ∈ ½0;T�; P� a:s:

where the Hamiltonian function H is given by

Hðt;Θ; s; r; p; q; λ0; λÞd

�r$cðt;Θ; sÞ þ p$bðt;Θ; sÞ þ q$σðt;ΘÞ �
Xl

i¼0

λif
i
ðt;Θ; sÞ:

Remark 2.6. As in Remark 2.3, analogue principles also hold in Theorem 2.5.

Remark 2.7. The maximum principle in Theorem 2.5 without state constraints is an easy
extension of the same result in Li andLiu (2014) and follows the proofmutatis
mutandis. Extending the result to allow for state constraints is a standard
procedure and can be found for instance in Djehiche and Helgesson (2014).
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3. Utilities of mean-variance type
Themean-variance utility functionwe usemodels the trade-off between risk and reward that
is central to many financial decisions, such as in portfolio management. By assuming mean-
variance preferences, we are capturing a realistic scenario where investors aim to maximize
returns while minimizing risk.

For instance, consider a portfolio manager (the agent) who is employed by a fund (the
principal). The fund wants the manager to invest in a way that maximizes returns while
controlling for risk. The manager’s utility function includes both the expected return and the
risk (variance) of the investment portfolio. The optimal contract, derived using our methods,
ensures that the manager is incentivized to invest in a way that aligns with the fund’s
objectives, despite the manager having private information about investment opportunities
and risks.

We are nowgoing to fit themethods presented in Section 2 to amean-variance framework,
i.e. we want to control the forward-backward dynamics of mean-field type (2.5) with respect
to either of the following two cases:

(i) Minimize

IðuÞd� E

Z T

0
Uðt;ΘðtÞ; sðtÞÞdt þ VðxðTÞÞ

� �

þ
r
2
Var

Z T

0
Φðt;ΘðtÞ; sðtÞÞdt þ ΨðxðTÞÞ

� �

;

(3.1)

over S½0;T� for some risk aversion r > 0.

(ii) Minimize

J ðuÞdE

Z T

0
Uðt;ΘðtÞ; sðtÞÞdt þ VðxðTÞÞ

� �

(3.2)

over S½0;T� subject to a set of state constraints (compare (2.7)), including statements of
the form

Var
Z T

0
Φðt;ΘðtÞ; sðtÞÞdt þΨðxðTÞÞ

� �

≤R0: (3.3)

In order to carry this through we introduce the auxiliary process

ηðtÞd
Z t

0
Φðτ;ΘðτÞ; sðτÞÞdτ þ ΨðxðtÞÞ;

which by Itô’s Lemma solves the SDE

dηðtÞ ¼ ΦðtÞ þ bðtÞ$Ψ0ðxðtÞÞ þ
σ2ðtÞ
2

$Ψ
00

ðxðtÞÞ
� �

dt þ σðtÞ$Ψ0ðxðtÞÞdWt;

ηð0Þ ¼ 0:

8
>><

>>:

(3.4)
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Here we adopt the simpler notational convention Φ(t)dΦ(t, Θ(t), s(t)). By considering (2.5)
with (3.4) as an augmented dynamics we may rewrite (3.1) (or analogously for the state
constraint (3.3)) as

IðsÞdE −
Z T

0
Uðt;ΘðtÞ; sðtÞÞdt þ VðxðTÞÞ þ

r
2
ðηðTÞ � E½ηðTÞ�Þ2

� �

: (3.5)

An optimal control problem involving the cost functional (3.5) is within the framework of
Section 2, in particular Theorem 2.10.

For the principal–agent problem we are interested in the following:
(MV1). Minimize (3.1) subject to the state constraint

E

Z T

0
uðt;ΘðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

≤C0;

for some finite C0 ∈ R over S½0;T�.

(MV2). Minimize (3.2) subject to the state constraints

J EðsÞdE

Z T

0
uðt;ΘðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

≤C0;

J V ðsÞdVar
Z T

0
fðt;ΘðtÞ; sðtÞÞdt þ ψðxðTÞÞ

� �

≤R0;

8
>>><

>>>:

for some finite C0 < 0 and R0 > 0 over S½0;T�.

It is now an easy task to formulate the stochastic maximum principles that characterize
optimality in (MV1) and (MV2) respectively. In the two corollaries that follow we adopt the
vector notation:

BðtÞd

bðtÞ

ΦðtÞ þ bðtÞ$Ψ0ðxðtÞÞ þ
σ2ðtÞ
2

$Ψ
00

ðxðtÞÞ

0

B
B
@

1

C
C
A; ΣðtÞdσðtÞ 1

Ψ0ðtÞ

� �

;

bðtÞd

bðtÞ

fðtÞ þ bðtÞ$ψ 0ðxðtÞÞ þ σ2ðtÞ
2

$ψ 00 ðxðtÞÞ

0

B
B
@

1

C
C
A; σðtÞdσðtÞ 1

ψ 0ðtÞ

� �

;

and

xðtÞd xðtÞ
ηðtÞ

� �

:

Corollary 3.1. The stochasticmaximumprinciple forMV1. Let assumptions 3–6 hold and
let Ψ($) be three times differentiable. If ðxð$Þ; yð$Þ; zð$Þ; sð$ÞÞ is an optimal
4-tuple of (MV1), then there exists a vector ðλA; λPÞ∈ R2 such that

AJEB
8,3

318



λP ≥ 0; λ2P þ λ2A ¼ 1; (3.6)

and a 3-tuple ðRð$Þ;Pð$Þ;Qð$ÞÞ∈L2
F ðΩ;Cð½0;T�; RÞÞ3 ðL2

F ðΩ;Cð½0;T�; RÞÞÞ
2
3 ðL2

F ð0;
T; RÞÞ

2 of solutions to the adjoint equation

dRðtÞ ¼ cyðtÞRðtÞ � BT
y ðtÞ$PðtÞ � ΣT

y ðtÞ$QðtÞ þ λAuyðtÞ � λPUyðtÞ
n

þE
h
c~yðtÞRðtÞ � BT

~y ðtÞ$PðtÞ � ΣT
~y ðtÞ$QðtÞ þ λAu~yðtÞ � λPU~yðtÞ

io
dt

þ czðtÞRðtÞ � BT
z ðtÞ$PðtÞ � ΣT

z ðtÞ$QðtÞ þ λAuzðtÞ � λPUzðtÞ
n

þE
h
c~zðtÞRðtÞ � BT

~z ðtÞ$PðtÞ � ΣT
~z ðtÞ$QðtÞ þ λAu~zðtÞ � λPU~zðtÞ

io
dWt;

dPðtÞ ¼ cxðtÞRðtÞ � BT
x ðtÞ$PðtÞ � ΣT

x ðtÞ$QðtÞ þ λAuxðtÞ � λPUxðtÞ
n

þE
h
c~xðtÞRðtÞ � BT

~x ðtÞ$PðtÞ � ΣT
~x ðtÞ$QðtÞ þ λAu~xðtÞ � λPU ~xðtÞ

io
dt þ qðtÞdWt;

(3.7)

where

Rð0Þ ¼ 0; PðTÞ ¼ − φxðxðTÞÞ
0

� �

$RðTÞ � λAv0ðxðTÞÞ � λPV
0
ðxðTÞÞ

rðηðTÞ � E½ηðTÞ�Þ

� �

such that

sðtÞ ¼ argmax
s∈S
H
�
t;ΘðtÞ; s;RðtÞ;PðtÞ;QðtÞ; λA; λP

�
a:e: t ∈ ½0;T�; P� a:s:

where the Hamiltonian function H is given by

Hðt;Θ; s;R; P;Q; λA; λPÞd

�cðt;Θ; sÞ$Rþ BT
ðt;Θ; sÞ$P þ ΣTðt;Θ; sÞ$Q� λAuðt;Θ; sÞ þ λPUðt;Θ; sÞ:

Corollary 3.2. The stochasticmaximumprinciple forMV2. Let assumptions 3–6 hold and
let ψ($) be three times differentiable. If ðxð$Þ; yð$Þ; zð$Þ; sð$ÞÞ is an optimal
4-tuple of (MV2), then there exists a vector ðλP ; λE ; λV Þ∈ R3 such that

λP ≥ 0; λ2P þ λ2E þ λ2V ¼ 1; (3.8)

satisfying the transversality condition

λE

λV

� �T

$

v1 � E

Z T

0
uðt;ΘðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

v2 � Var
Z T

0
fðt;ΘðtÞ; sðtÞÞdt þ ψðxðTÞÞ

� �

0

B
B
B
B
@

1

C
C
C
C
A

≥ 0; ∀ v1 ≤C0; v2 ≤R0 (3.9)
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and a 3-tuple ðRð$Þ;Pð$Þ;Qð$ÞÞ∈L2
F ðΩ;Cð½0;T�; RÞÞ3 ðL2

F ðΩ;Cð½0;T�; RÞÞÞ
2
3 ðL2

F ð0;
T; RÞÞ

2 of solutions to the adjoint FBSDE

dRðtÞ ¼ cyðtÞRðtÞ � bT
y ðtÞ$PðtÞ � σT

y ðtÞ$QðtÞ þ λEuyðtÞ þ λPUyðtÞ
n

þE
h
c~yðtÞRðtÞ � bT

~y ðtÞ$PðtÞ � σT
~y ðtÞ$QðtÞ þ λEu~yðtÞ þ λPU~yðtÞ

io
dt

þ czðtÞRðtÞ � bT
z ðtÞ$PðtÞ � σT

z ðtÞ$QðtÞ þ λEuzðtÞ þ λPUzðtÞ
n

þE
h
c~zðtÞRðtÞ � bT

~z ðtÞ$PðtÞ � σT
~z ðtÞ$QðtÞ þ λEu~zðtÞ þ λPU~zðtÞ

io
dWt;

dPðtÞ ¼ cxðtÞRðtÞ � bT
x ðtÞ$PðtÞ � σT

x ðtÞ$QðtÞ þ λEuxðtÞ þ λPUxðtÞ
n

þE
h
c~xðtÞRðtÞ � bT

~x ðtÞ$PðtÞ � σT
~x ðtÞ$QðtÞ þ λEu~xðtÞ þ λPU ~xðtÞ

io
dt þ QðtÞdWt;

(3.10)

where

Rð0Þ ¼ 0; PðTÞ ¼ − φxðxðTÞÞ
0

� �

$RðTÞ � λPV
0
ðxðTÞÞ þ λEv0ðxðTÞÞ

2λV ðηðTÞ � E½ηðTÞ�Þ

� �

such that

sðtÞ ¼ argmax
s∈S
H
�
t;ΘðtÞ; s;RðtÞ;PðtÞ;QðtÞ; λE ; λP

�
a:e: t ∈ ½0;T�; P� a:s:

where the Hamiltonian function H is given by

Hðt;Θ; s;R; P;Q; λA; λPÞd

�cðt;Θ; sÞ$R þ bT
ðt;Θ; sÞ$P þ σTðt;Θ; sÞ$Q� λEuðt;Θ; sÞ � λPUðt;Θ; sÞ:

The transversality condition (3.9) specifies which multipliers (λE, λV) satisfying (3.8) (given
λP ∈ [0, 1]) that are of interest for characterizing optimality in (MV2). If we let

ΛMV 2d
�
ðx; yÞ∈ R2 : x≤C0; 0≤ y≤R0

�
;

it is clear by (3.9) that ðJ EðsÞ;J V ðsÞÞ∈ vΛMV2. This narrows the set of multipliers to five
distinct cases:

(i). If J V ðsÞ ¼ 0, then λE ¼ 0; λV ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

; 0≤ λP ≤ 1.

(ii). If J V ðsÞ ¼ R0, then λE ¼ 0; λV ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

; 0≤ λP ≤ 1.

(iii). If J EðsÞ ¼ C0 and J V ðuÞ ¼ 0, then λE ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

cos θ,

λV ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

sin θ; 0≤ λP ≤ 1; θ ∈ −π
2; 0

� �
.

(iv). If J EðsÞ ¼ C0 and J V ðuÞ ¼ R0, then λE ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

cos θ,

λV ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

sin θ; 0≤ λP ≤ 1; θ ∈ 0; π
2

� �
.
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(v). If J EðsÞ ¼ C0, then λE ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi

1− λ2P
q

; λV ¼ 0; 0≤ λP ≤ 1.
Each of the cases (i)–(v) are illustrated in Figure 1.

4. The principal–agent problem
We are now ready to state the principal–agent problem in the framework of Sections 2 and 3
and thereby develop a scheme for characterizing optimality. In the present literature two
types of models seem to be the most popular; the full information case and the hidden action
case. Our treatment will focus on the hidden action regime although similar techniques
would apply also to the full information case.

Let us consider a principal–agent scenario in a financial firm where the principal is the
firm’s owner and the agent is a financial manager. The owner wants to ensure that the
manager works to maximize the firm’s profits while taking into account the risks associated
with different investment strategies. The hidden action model applies here because the
owner cannot directly observe the manager’s day-to-day decisions but can see the overall
portfolio performance.

Our assumptions, such as the agent’s mean-variance utility, model the manager’s
preference for balancing risk and return. These assumptions might not hold if the manager’s
risk tolerance changes due to personal circumstances or market conditions. Under these
assumptions, our propositions provide a method to design a compensation contract that
motivates themanager tomake investment decisions that are optimal for the firm, evenwhen
the manager has private information.

For example, in our linear-quadratic model, the optimal contract derived ensures that the
manager is compensated based on the performance of the portfolio, taking into account both
the returns and the risks. This aligns the manager’s incentives with the firm’s goals, leading
to a more efficient and effective investment strategy.

The principal–agent problem under hidden action (or moral hazard) is inspired by the
seminal paper of Holmstr€om and Milgrom (1987) and is well treated for instance in Cvitani�c
and Zhang (2013) and Williams (2013). In what follows we first consider a mean-variance
version of such a model, using the stochastic maximum principle as our main tool. For
reasons of tractability (and in line with the present literature) we will have to consult weak
solutions of SDEs. We clarify this by referring to the model as hidden action in the weak
formulation.We will also consider a simpler model under hidden action in which the
information set of the principal is relaxed to a larger set. Such a relaxation does not
necessarily imply full information and we refer to this model as hidden contract in the strong
formulation.

Source(s): Figure by the authors

Figure 1.
The cases (i)–(v)
specifying the

multipliers (λE, λV) that
are illustrated by

arrows
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4.1 Mean-variance hidden action in the weak formulation
Consider a principal–agent model where output x(t) is modeled as a risky asset solving
the SDE:

dxðtÞ ¼ σðt; xðtÞÞdWt;

xð0Þ ¼ 0;

�

(4.1)

Here T > 0 and Wt is a 1-dimensional standard Brownian motion defined on the filtered

probability space ðΩ;F ; F;PÞ. For the diffusionwe assume σ >0andE
R t
0 σðt; xðtÞÞ2dt

h i
< ∞.

The agent’s level of effort is represented by a process e($), taking values in some predefined
subset E ⊆ R (typically E ¼ ½0;be� for some non-negativebe or E ¼ R) and is required to belong
to the set E½0;T�, where

E½0;T�dfe : ½0;T�3 Ω →E; e is F� adaptedg

We consider the case of hidden actions meaning that the principal cannot observe e($).
Output, however, is public information and observed by both the principal and the agent.
Before the period starts the principal specifies an Fx-adapted cash-flow s($) (typically non-
negative) for all t∈ [0,T], which compensates the agent for costly effort inmanaging x($). Just
as for the effort we assume s(t) ∈ S for all t ∈ [0, T] and some subset S ⊆ R and require
sð$Þ∈S½0;T�, where

S½0;T�dfs : ½0;T�3 Ω → S; s is Fx � adaptedg:

The principal is not constrained by any means and can commit to any such
process sð$Þ∈S½0;T�.

In this model we consider cost functionals J P and J A of the principal and the agent,
respectively, of the following form:

J Aðeð$Þ; sÞdE

Z T

0
uðt; xðtÞ; eðtÞ; sðtÞÞdt þ vðxðtÞÞ

� �

(4.2)

and

J Pðsð$ÞÞd� E

Z T

0
Uðt; xðtÞ; sðtÞÞdt þ VðxðTÞÞ

� �

þ
r
2
Var

Z T

0
Φðt; xðtÞ; sðtÞÞdt þΨðxðTÞÞ

� �

;

(4.3)

for some given risk aversion r > 0. The agent will accept s($) and start working for the
principal only if the participation constraint

J A

�
eð$Þ; s

�
≤C0; (4.4)

is fulfilled by s for some, typically negative, constant C0. We assume incentive compatibility,
meaning that the agent will act as to optimize J A in response to any given s($). The
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principal’s problem is to minimize J P under the participation constraint and incentive
compatibility.

A direct approach to the principal–agent problem as described above is, however, not
mathematically tractable. Therefore, in line with Cvitani�c and Zhang (2013) and Williams
(2013) we make the problem tractable by using the concept of weak solutions of SDEs. That
is, rather than having amodel inwhich the agent controls x($) itself we consider the density of
output, Γe($), as the controlled dynamics where

dΓeðtÞ ¼ ΓeðtÞf ðt; xðtÞ; eðtÞÞσ−1ðt; xðtÞÞdWt;

Γeð0Þ ¼ 1;

�

(4.5)

for a given function f describing production rate and satisfying Assumption 1 in Section 2.
Note that Γe ¼ EðYÞ where YðtÞ ¼

R t
0 f ðτ; xðτÞ; eðτÞÞ$σ−1ðτ; xðτÞÞdWðτÞ and Eð$Þ denotes

the stochastic exponential. The key idea behind the weak formulation of the hidden action
model, letting the agent control Γe(t) rather than x(t), is that it allows us to consider (x)T as a
fixed but random realization (actually Fx ¼ F as a consequence of the regularity of σ). If Γe($)
is a martingale, which follows by assuming for instance the Novikov condition or the Bene�s
condition (see. Karatzas and Shreve (1991, p. 200)), we have by Girsanov’s theorem that the
probability measure dPe defined by

dPe

dP
¼ ΓeðTÞ (4.6)

makes the process We(t) defined by

dWe
t ¼ dWt � f ðt; xðtÞ; eðtÞÞσ−1ðt; xðtÞÞdt (4.7)

a Pe-Brownian motion. In particular

dxðtÞ ¼ f ðt; xðtÞ; eðtÞÞdt þ σðt; xðtÞÞdWe
t (4.8)

and

J Aðeð$Þ; sÞ ¼ Ee
Z T

0
uðt; xðtÞ; eðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

¼

¼ E

Z T

0
ΓeðtÞuðt; xðtÞ; eðtÞ; sðtÞÞdt þ ΓeðTÞvðxðTÞÞ

� �

:

(4.9)

We think of the principal–agent problem as divided into two coupled problems; the agent’s
problem and the principal’s problem.

The agent’s problem (weak formulation):Given any sð$Þ∈S½0;T� (that we assume
fulfills the participation constraint) the agent’s problem is to find a process eð$Þ∈ E½0;T�
such that the cost functional

J A

�
eð$Þ; s

�
¼ E

Z T

0
ΓeðtÞuðt; xðtÞ; eðtÞ; sðtÞÞdt þ ΓeðTÞvðxðTÞÞ

� �

;

is minimized, subject to the dynamics in (4.5).
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The principal’s problem (strong formulation): Given that the agent’s problem has
an optimal solution eð$Þ in the weak formulation the Principal’s problem is to find a process
sð$Þ∈S½0;T�, such that the cost functional

J P

�
sð$Þ

�
d� E

Z T

0
Uðt; xðtÞ; sðtÞÞdt þ VðxðTÞÞ

� �

þ
r
2
Var

Z T

0
Φðt; xðtÞ; sðtÞÞdt þ ΨðxðTÞÞ

� �

;

is minimized and

J A

�
eð$Þ; s

�
¼ E

Z T

0
uðt; xðtÞ; eðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

≤C0;

subject to the dynamics

dxðtÞ ¼ σðt; xðtÞÞdWt; t ∈ ð0;T�;
xð0Þ ¼ 0:

�

Remark 4.1. Herewe have chosen to formulate the principal’s problem in the strong form
rather than in the weak form, which seems to be most common in the
literature. However, as pointed out in Cvitani�c and Zhang (2013), because of
adaptiveness this approach can be problematic in certain models. This is a
fact that one should be aware of.
In this context the following definition is natural.

Definition 4.2. An optimal contract is a pair ðeð$Þ; sð$ÞÞ∈ E½0;T�3S½0;T� obtained by
sequentially solving first the agent’s and then the principal’s problem.
In game theoretic terminology an optimal contract can thus be thought of
as a Stackelberg equilibrium in a two-player non-zero-sum game.
It is important to note that even though the principal cannot observe the
agent’s effort, he/she can still offer the agent a contract by suggesting a
choice of effort e($) and a compensation s($). By incentive compatibility,
however, the principal knows that the agent only will follow such a
contract if the suggested effort solves the agent’s problem. To find the
optimal effort, eð$Þ, the principal must have information of the agent’s
preferences, i.e. the functions u and v. The realism of such an assumption
is indeed questionable but nevertheless necessary in our formulation due
to the participation constraint. In order to make the intuition clear and to
avoid any confusion we adopt the convention that the principal has full
information of the agent’s preferences u and v. This gives a tractable way
of thinking of how actual contracting is realized.
Thus, the principal is able to predict the optimal effort eð$Þ of the agent’s
problem and thereby suggest an optimal contract ðeð$Þ; sð$ÞÞ, if it exists.
The idea is to apply the methods from Section 2 to characterize optimal
contracts in the general principal–agent model presented above.
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However, since the control variable e figures in the diffusion of (4.5) we
require the following convexity assumption in order to avoid a second
order adjoint process in the maximum principle:

Assumtion 7. The set E ⊂ R is convex.
The agent’s Hamiltonian in the weak formulation is

HAðt; x;Γe; e; p; q; sÞdq$Γe$
f ðt; x; eÞ
σðt; xÞ � Γe$uðt; x; e; sÞ; (4.10)

and by Theorem 2.1 any optimal control eðtÞ solving the agent’s problemmust maximizeHA
pointwise. The pair (p($), q($)) solves the agent’s adjoint BSDE:

dpðtÞ ¼ − qðtÞ$
f
�
t; xðtÞ; eðtÞ

�

σðt; xðtÞÞ � u
�
t; xðtÞ; eðtÞ; sðtÞ

�
8
<

:

9
=

;
dt þ qðtÞdWt;

pðTÞ ¼ −vxðxðTÞÞ

8
>>>><

>>>>:

(4.11)

If f and u both are differentiable in the e variable and we assume that eð$Þ∈ intðEÞ,
maximizing HA translates into the first order condition

qðtÞ ¼ σðt; xðtÞÞ$
ue

�
t; xðtÞ; eðtÞ; sðtÞ

�

f e
�
t; xðtÞ; eðtÞ

� ; (4.12)

which is in agreement withWilliams (2013). Before proceeding to the Principal’s problemwe
assume solvability of e in (4.12) and we write

eðtÞ ¼ e*
�
t; xðtÞ; qðtÞ; sðtÞ

�
;

where e* : Rþ3 R4 → R is a function having sufficient regularity to allow for the existence
of a unique solution to the FBSDE (4.13) below. Based on the information given by e* the
principal wishes to minimize the cost J P by selecting a process s($) respecting (4.4). The
dynamics of the corresponding control problem is, in contrast to the SDE of the agent’s
problem, a FBSDE built up by the output SDE coupled to the agent’s adjoint BSDE. More
precisely:

dxðtÞ ¼ σðt; xðtÞÞdWt;

dpðtÞ ¼ − qðtÞ$
f
�
t; xðtÞ; e*ðt; xðtÞ; qðtÞ; sðtÞÞ

�

σðt; xðtÞÞ � u
�
t; xðtÞ; e*ðt; xðtÞ; qðtÞ; sðtÞÞ; sðtÞ

�
8
<

:

9
=

;
dt

þqðtÞdWt;

xð0Þ ¼ 0; pðTÞ ¼ −vxðxðTÞÞ:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(4.13)
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In order to characterize cash-flow optimality in the Principal’s problem we apply Theorem
3.1. The Hamiltonian reads

HPðt; x; q; s;R;P1;P2;Q1;Q2; λP ; λAÞd

R$ �q$
f
�
t; x; e*ðt; x; q; sÞ

�

σðt; xÞ þ u
�
t; x; e*ðt; x; q; sÞ; s

�
8
<

:

9
=

;
þ P2$ Φðt; x; sÞ þ

σ2ðt; xÞ
2

Ψ
00

ðxÞ
� �

þQ1$σðt; xÞ þ Q2$σðt; xÞΨ0ðxÞ � λA$u
�
t; x; e*ðt; x; q; sÞ; s

�
þ λP$Uðt; x; sÞ;

(4.14)

and for any optimal 4-tuple ðxð$Þ; pð$Þ; qð$Þ; sð$ÞÞ we have the existence of Lagrange
multipliers λA; λP ∈ R satisfying the conditions in Theorem (3.1). The adjoint processes (R($),
P1($), Q1($), P2($), Q2($)) solve the FBSDE (3.7), in which case

sðtÞ ¼ argmax
s∈S
HP

�
t; xðtÞ; pðtÞ; qðtÞ; s;RðtÞ;P1ðtÞ;Q1ðtÞ;P2ðtÞ;Q2ðtÞ; λP ; λA

�
:

Before stating the full characterization of optimal contracts in the Mean-Variance Principal-
Agent problem under Hidden Action we introduce the following technical assumption:
(PA1). All functions involved in the Agent’s problem satisfy Assumption 1 from Section 2
and the density of output is a martingale. The functions defining the Principal’s problem
(including composition with the map e*) satisfy Assumptions 2-6, also from Section 2, and Ψ
is three times differentiable.

Theorem 4.3. Let the statements in (PA1) and Assumption 7 hold and consider the
Mean-Variance Principal-Agent problem under HiddenActions with risk
aversion r > 0 and participation constraint defined by C0 < 0. Then, if
ðeð$Þ; sð$ÞÞ is an optimal contract there exist numbers λA; λP ∈ R
such that

λP ≥ 0; λ2A þ λ2P ¼ 1;

a pair ðpð$Þ; qð$ÞÞ∈L2
F ð0;T; RÞ3 ðL2

F ð0;T; RÞÞsolving the SDE in (4.11)
and a quintuple ðRð$Þ; P1ð$Þ; P2ð$Þ;Q1ð$Þ;Q2ð$ÞÞ∈L2

F ðΩ;Cð½0;T�; RÞÞ

3L2
F ðΩ;Cð½0;T�; RÞÞ3L2

F ð0;T; RÞ solving the adjoint FBSDE (3.7)
defined by (4.13) such that, sequentially,

eðtÞ ¼ argmax
e∈E
HA

�
t; xðtÞ;ΓeðtÞ; e; qðtÞ; sðtÞ

�
;

and

sðtÞ ¼ argmax
s∈S
HP

�
t; xðtÞ; qðtÞ; s;RðtÞ;P1ðtÞ;Q1ðtÞ;P2ðtÞ;Q2ðtÞ; λP ; λA

�
;

with Hamiltonians HA and HP as in (4.10) and (4.14) respectively.
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4.2 Hidden Contract in the strong formulation
We are now going to study a different type of mean-variance principal–agent problems
called hidden contract models (introduced in Djehiche and Helgesson (2014)). Comparing to
the hidden actionmodel in Section 4.1 the hidden contracts differ in two key aspects. First we
relax the information set of the principal from Fx to the full filtration generated by the
Brownian motion. Secondly we treat the process s($) as hidden, meaning that the Agent
reacts to the provided cash-flow given as an F-adapted process, without being aware of the
underlying dependence of the output. This explains the name Hidden Contract.

The fact that the underlyingmathematical structure of s($) is unknown to theAgent in the
Hidden Contract model motivates the relevance of a Mean-Variance framework by an
extended participation constraint (compared to (4.4)). By requiring an upper bound for the
variance of for instance the expected accumulated wealth provided by s($) the Agent can
protect him/her-self from undesirable high levels of risk. The setup goes as follows.

Consider a Principal-Agent model in which output x(t) is modeled as a risky asset solving
the SDE

dxðtÞ ¼ f ðt; xðtÞ; eðtÞÞdt þ σðt; xðtÞÞdWt; t ∈ ð0;T�;
xð0Þ ¼ 0:

�

(4.15)

Here T > 0 and Wt is a 1-dimensional standard Brownian motion defined on the filtered
probability space ðΩ;F ; F;PÞ. The functions f and σ represent production rate and volatility
respectively, and we assume both of them to satisfy Assumption 1 from Section 2. Just as for
the Hidden Action case we require any admissible effort process e($) to be in E½0;T�. For the
admissible cash-flows, however, we enlarge S½0;T� (due to the extended flow of information
to the Principal) to

S½0;T�dfs : ½0;T�3 Ω →S; s is F-adaptedg:

We consider the cost functionals

J Aðeð$Þ; sÞdE

Z T

0
uðt; xðtÞ; eðtÞ; sðtÞÞdt þ vðxðTÞÞ

� �

; (4.16)

and

J Pðsð$ÞÞdE

Z T

0
Uðt; xðtÞ; sðtÞÞdt þ VðxðTÞÞ

� �

; (4.17)

and the participation constraint:

J A

�
eð$Þ; s

�
dE

Z T

0
u
�
t; xðtÞ; eðtÞ; sðtÞ

�
dt þ vðxðTÞÞ

� �

≤C0;

IA

�
eð$Þ; s

�
dVar

Z T

0
f
�
t; xðtÞ; eðtÞ; sðtÞ

�
dt þ ψðxðTÞÞ

� �

≤R0:

8
>>><

>>>:

(4.18)

Just as for the Hidden Action case in Section 4.1 we consider the Agent’s- and the Principal’s
problem sequentially. The precise statements are:
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The Agent’s Problem.Given any sð$Þ∈S½0;T� (fulfilling the participation constraint)
the Agent’s problem is to find a process eð$Þ∈ E½0;T�minimizing (4.16).

The Principal’s Problem.Given that the Agent’s problem has an optimal solution eð$Þ
the Principal’s problem is to find a process sð$Þ∈S½0;T� minimizing the cost functional
(4.17) subject to the participation constraint (4.18).

The mathematical virtue of Hidden Contracts is the possibility of working solely in the
strong formulation. For the Agent’s problem we are facing the Hamiltonian

HAðt; x; e; p; q; sÞdp$f ðt; x; eÞ þ q$σðt; xÞ � uðt; x; e; sÞ: (4.19)

Therefore, by Theorem 2.1 we have for any optimal pair ðxð$Þ; eð$ÞÞ the existence of adjoint
processes (p($), q($)) solving the backward stochastic differential equation (BSDE):

dpðtÞ ¼ − f x
�
t; xðtÞ; eðtÞ

�
pðtÞ þ σx

�
t; xðtÞ

�
qðtÞ � ux

�
t; xðtÞ; eðtÞ

�n o
dt þ qðtÞdWt;

pðTÞ ¼ −vx
�
xðTÞ

�
;

8
<

:

(4.20)

and the characterization

eðtÞ ¼ argmax
e∈E
HA

�
t; xðtÞ; e; pðtÞ; qðtÞ; sðtÞ

�
; (4.21)

for a.e. t ∈ [0, T] and P-a.s.

As in the hidden contract case we proceed into the principal’s problem by assuming the
existence of a function e* such that et ¼ e*ðt; xðtÞ; pðtÞ; qðtÞ; sðtÞÞ (having sufficient
regularity to allow for existence and uniqueness of a solution to (4.22)). The principal is facing
the problem of minimizing J P subject to (4.18) by controlling the following FBSDE:

dxt ¼ f
�
t; xðtÞ; e*

�
t; xðtÞ; pðtÞ; qðtÞ; sðtÞ

��
dt þ σ

�
t; xðtÞ

�
dWt;

dpðtÞ ¼ − f x
�
t; xðtÞ; e*

�
t; xðtÞ; pðtÞ; qðtÞ; sðtÞ

��
pðtÞ þ σx

�
t; xðtÞ

�
qðtÞ

n

�ux

�
t; xðtÞ; e*

�
t; xðtÞ; pðtÞ; qðtÞ; sðtÞ

��o
dt þ qðtÞdWt;

xð0Þ ¼ 0; pðTÞ ¼ −vx
�
xðTÞ

�
:

8
>>>>>><

>>>>>>:

(4.22)

We now apply Theorem 3.2 in order to characterize optimal cash-flows in the principal’s
problem. The associated Hamiltonian is

HPðt; x; p; q; s;R;P1;P2;Q1;Q2; λE ; λV ; λPÞ ¼

R$ðf xðt; x; eðt; x; p; q; sÞÞpþ σxðt; xÞq� uxðt; x; eðt; x; p; q; sÞ; sÞÞ

þP1$f ðt; x; eðt; x; p; q; sÞÞ þ P2$ fðt; x; eðt; x; p; q; sÞ; sÞf

þf ðt; x; eðt; x; p; q; sÞÞψ 0ðxÞ þ σ2ðt; xÞ
2

ψ 00 ðxÞ
�

þ Q1$σðt; xÞ þ Q2$σðt; xÞψ 0ðxÞ

�λE$uðt; x; eðt; x; p; q; sÞ; sÞ � λP$Uðt; x; sÞ:

(4.23)
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For any optimal 4-tuple ðxð$Þ; pð$Þ; qð$Þ; sð$ÞÞ of the principal’s problem we have the
existence of Lagrange multipliers λE ; λV ; λP ∈ R satisfying either of the conditions (i)-(v) in
Section 2, with λP ≥ 0 and

λ2E þ λ2V þ λ2P ¼ 1;

and a triple of adjoint processes (R($), P($), Q($)) solving the FBSDE (3.10) so that

sðtÞ ¼ argmax
s∈S
HPðt; xðtÞ; pðtÞ; qðtÞ; s;RðtÞ;P1ðtÞ;P2ðtÞ;Q1ðtÞ;Q2ðtÞ; λE ; λPÞ:

For the full characterization of optimality we require the following technical assumption:
(PA2). All functions involved in the agent’s problem satisfy the Assumption 1 from

Section 2. The functions defining the principal’s problem (including composition with the
map e*) satisfy the Assumptions 2–6, also from Section 2, and ψ is three times differentiable.

Theorem 4.4. Let the statements in (PA2) hold and consider the mean-variance principal–
agent problem under hidden contract with participation constraints defined
by the given parameters C0 < 0 and R0 > 0. Then, if ðeð$Þ; sð$ÞÞ is an optimal
contract there exist numbers λE ; λV ; λP ∈ R such that

λP ≥ 0; λ2E þ λ2V þ λ2P ¼ 1;

a pair ðpð$Þ; qð$ÞÞ∈L2
F ð0;T; RÞ3 ðL2

F ð0;T; RÞÞ solving the BSDE in (4.20) and a quintuple
ðRð$Þ; P1ð$Þ; P2ð$Þ;Q1ð$Þ;Q2ð$ÞÞ∈L2

F ðΩ;Cð½0;T�; RÞÞ3L2
F ðΩ;Cð½0;T�; RÞÞ3L2

F ð0;T;

RÞ solving the adjoint FBSDE (3.10) defined by (4.22) such that, sequentially,

eðtÞ ¼ argmax
e∈E
HA

�
t; xðtÞ; e; pðtÞ; qðtÞ; sðtÞ

�
;

and

sðtÞ ¼ argmax
s∈S
HP

�
t; xðtÞ; pðtÞ; qðtÞ; s;RðtÞ;P1ðtÞ;P2ðtÞ;Q1ðtÞ;Q2ðtÞ; λE ; λV ; λP

�
:

with Hamiltonians HA and HP as in (4.19) and (4.23), respectively.

5. A solved example in the case of hidden contracts
We now illustrate the method of Section 4 by considering a concrete example of hidden
contract type. In order to find explicit solutions we choose a linear-quadratic setup. As a
result we get optimal contracts adapted to the filtration generated by output.

Consider the following dynamics of production,

dxðtÞ ¼ ðaxðtÞ þ beðtÞÞdt þ σdWt; t ∈ ð0;T�;
xð0Þ ¼ 0; a; b∈ R and σ > 0;

�

and let the preferences of the agent and the principal be described by quadratic utility functions:

J Aðeð$Þ; sÞdE

Z T

0

ðst � etÞ
2

2
dt � α$

xðTÞ2

2

" #

; (5.1)
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J Pðsð$ÞÞdE

Z T

0

s2t
2
dt � β$

xðTÞ2

2

" #

: (5.2)

Note that we are following the convention of Section 4 to consider cost-rather than payoff-
functionals. Thus, the agent’s utility function should be interpreted as a desire to maintain a
level of effort close to the compensation given by the cash-flow. We think of the parameters
α> 0 and β> 0 as bonus factors of total production at timeT. For the participation constraint
we require any admissible cash-flow s(t) to satisfy the following:

J A

�
eð$Þ; s

�
≤C0;

Var xðTÞð Þ < R0;

(

(5.3)

where C0 < 0, R0 > 0 and eð$Þ denotes the optimal effort policy of the agent given s($).

Assume that the principal offers the agent s($) over the period 0≤ t ≤ T. The Hamiltonian
function of the agent is

HAðx; e; p; q; sÞdp$ðaxþ beÞ þ q$σ � ðs� eÞ2

2
;

so

vHA

ve
¼ bpþ s� e ¼ 0 and eðtÞ ¼ bpðtÞ þ sðtÞ; (5.4)

where the pair (p, q) solves the adjoint equation

dpðtÞ ¼ −apðtÞdt þ qðtÞdWt;

pðTÞ ¼ αxðTÞ:

�

Turning to the principal’s problem we want to control the FBSDE

dxðtÞ ¼
�
axðtÞ þ b2pðtÞ þ bsðtÞ

�
dt þ σdWt;

dpðtÞ ¼ −apðtÞdt þ qðtÞdWt;

xð0Þ ¼ 0; pðTÞ ¼ αxðTÞ;

8
><

>:
(5.5)

optimally with respect to the cost function (5.2) and the participation constraint (5.3). The
principal’s Hamiltonian is

HPðx; p; s;R; P1;P2;Q1;Q2; λE ; λPÞd

�ap$R þ
�
axþ b2pþ bs

�
$P1 þ

�
sþ axþ b2pþ bs

�
$P2 þ σ$ðQ1 þ Q2Þ

�λE$
b2p2

2
� λP$

s2

2

(5.6)
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so

vHP

vs
¼ bP1 þ ð1þ bÞP2 � λPs and sðtÞ ¼

bP1ðtÞ þ ð1þ bÞP2ðtÞ
λP

;

where the quintuple (R(t), P1(t), P2(t), Q1(t), Q2(t)) solves the adjoint FBSDE:

dRðtÞ ¼
�
aRðtÞ � b2ðP1ðtÞ þ P2ðtÞÞ þ λEb

2pðtÞ
�
dt;

dP1ðtÞ ¼ −aðP1ðtÞ þ P2ðtÞÞdt þ Q1ðtÞdWt;

dP2ðtÞ ¼ Q2ðtÞdWt;

Rð0Þ ¼ 0;
P1ðTÞ ¼ −αRðTÞ þ ðαλE þ βλPÞxðTÞ; P2ðTÞ ¼ 2λV ðE½ηðTÞ� � ηðTÞÞ:

8
>>>>><

>>>>>:

(5.7)

In this case, however, the auxiliary process η(t) is the same as the output x(t) in which case
P2ðTÞ ¼ 2λV ðE½xðTÞ�− xðTÞÞ. To solve the BSDE in (5.7) we can make a general linear
ansatz:

pðtÞ ¼ A11ðtÞxðtÞ þ B11ðtÞRðtÞ þ A21ðtÞE½xðtÞ� þ B21ðtÞE½RðtÞ�;
P1ðtÞ ¼ A12ðtÞxðtÞ þ B12ðtÞRðtÞ þ A22ðtÞE½xðtÞ� þ B22ðtÞE½RðtÞ�;
P2ðtÞ ¼ A13ðtÞxðtÞ þ B13ðtÞRðtÞ þ A23ðtÞE½xðtÞ� þ B23ðtÞE½RðtÞ�:

8
<

:
(5.8)

Using the standard procedure with Itô’s lemma it is elementary (but tedious) to derive a set of
twelve coupled Riccati equations for the coefficients in (5.8). A numerical example is
presented in Figure 2 below. We get the unique semi-explicit solution to the optimal contract
feðtÞ; sðtÞg, driven by the optimal dynamics ðxðtÞ;RðtÞÞ. What remains is to find a feasible
triple (λE, λV, λP) so that the optimal contract fulfills the participation constraint in (5.3). One
way of finding such a triple is for instance by stochastic simulation of ðxðtÞ;RðtÞÞ (e.g. a
simple Euler–Maruyama scheme) and then estimate the payoff and the variance in (5.3) by
Monte-Carlo techniques for different values of λP. In Figure 3 we have included the results of
such a scheme corresponding to case (iv) of the transversality condition in Corollary 3.2. Note
that RðtÞ satisfies the linear ODE.

dR
dt
þ
�
b2B12 þ b2B13 � λEb

2B11 � a
�
RðtÞ ¼

�
λEb

2A11 � b2A12 � b2A13

�
xðtÞ;

Rð0Þ ¼ 0;

8
><

>:
(5.9)

so

R

0

@t

1

A ¼

Z t

0
exp

Z s

0
b2B12 þ b2B13 � λEb

2B11 � a du
� �

$ λEb
2A11 � b2A12 � b2A13

� �
xds

exp
Z t

0
b2B12 þ b2B13 � λEb

2B11 � a ds
� � ;
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and is by that Fx-adapted. Therefore, in this model the optimal contract feðtÞ; sðtÞg is
Fx-adapted and coincides with the corresponding strong solution to the hidden action
problem, i.e. when the information set of the principal is generated by output.

6. Conclusion
In this paper, we have extended the continuous-time principal–agent problem by
incorporating time-inconsistent utility functions, specifically mean-variance utilities. This
approach overcomes the limitations of traditional methods that rely on the Bellman principle

t

t

t

t

t

t

t

t

t

t

t

t

Source(s): Figure by the authors

θ θ θλλλP P P

Note(s): Parameter values: a = b = σ = 1, α = 0.2, β = 1, T = 0.03

Source(s): Figure by the authors

Figure 2.
Solution curves of (5.7)
with parameter values
chosen as:
a 5 b 5 σ 5 1, α 5 0.2,
β 5 1, λP 5 0.1,
θ 5 π/2, T 5 0.03

Figure 3.
Monte-Carlo
simulations of
J Aðeð$Þ; sÞ, J Pðsð$ÞÞ
and Var(x(T)) as
functions of λP and θ
(relating to λE and λV
via case (iv)) based on
106 sample paths at
each point
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and the Hamilton–Jacobi–Bellman equation, which are not suitable for time-inconsistent
scenarios. By applying the Pontryaginmaximumprinciple for FBSDEs, we have developed a
novel method for characterizing optimal contracts under time-inconsistent preferences. This
contribution fills a significant gap in the literature. Our framework is particularly relevant
for risk management applications in finance and economics, such as portfolio optimization
and performance-based compensation. By illustrating the method through a fully solved
linear-quadratic example, we demonstrated how our approach can be applied to real-world
scenarios involving time-inconsistent preferences. This example underscores the practical
value of our results for designing optimal contracts andmanaging risk. Our study provides a
rigorous framework for designing optimal contracts in principal–agent problems with time-
inconsistent preferences, which are common in financial settings. By modeling these
scenarios, we offer insights into how principals can effectively manage agents who have
private information and differing risk preferences. Future research could build on our
findings by exploring additional forms of time inconsistency, including hyperbolic-type
discounting kernels, and extending the framework to more complex utility functions.
Investigating the application of our methods in multi-agent settings or different economic
environments may provide further insights. Empirical validation through case studies or
simulations would also be beneficial, offering a deeper understanding of the practical
performance and robustness of the proposed methods.
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